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Abstract— This study proposes a novel planning framework
based on a model predictive control formulation that incorpo-
rates signal temporal logic (STL) specifications for task comple-
tion guarantees and robustness quantification. This marks the
first-ever study to apply STL-guided trajectory optimization for
bipedal locomotion push recovery, where the robot experiences
unexpected disturbances. Existing recovery strategies often
struggle with complex task logic reasoning and locomotion ro-
bustness evaluation, making them susceptible to failures due to
inappropriate recovery strategies or insufficient robustness. To
address this issue, the STL-guided framework generates optimal
and safe recovery trajectories that simultaneously satisfy the
task specification and maximize the locomotion robustness. Our
framework outperforms a state-of-the-art locomotion controller
in a high-fidelity dynamic simulation, especially in scenarios
involving crossed-leg maneuvers. Furthermore, it demonstrates
versatility in tasks such as locomotion on stepping stones, where
the robot must select from a set of disjointed footholds to
maneuver successfully.

I. INTRODUCTION

This study investigates signal temporal logic (STL) based
formal methods for robust bipedal locomotion, with a specific
focus on circumstances where a robot encounters environ-
mental perturbations at unforeseen times.

Robust bipedal locomotion has been a long-standing
challenge in the field of robotics. Existing studies have
demonstrated impressive performance through the reactive
regulation of angular momentum [1], [2] or the predictive
control of foot placement [3], [4]. Diverging from these ap-
proaches, our research aims to provide formal guarantees on
a robot’s ability to recover from perturbations via temporal-
logic-based formal control methods. To achieve this, our
research centers around designing formal requirements (i.e.,
task specifications) for bipedal locomotion push recovery,
and employing trajectory optimization (TO) that guarantees
system robustness.

Formal methods for bipedal systems have gained sig-
nificant attention in recent years [5], [6]. The prevailing
approach in existing works often relies on abstraction-
based methods such as linear temporal logic (LTL) [7]
with relatively simple verification processes, which abstract
complex continuous behaviors into discrete events and low-
dimensional states. However, challenges arise when ad-
dressing continuous, high-dimensional systems like bipedal
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Fig. 1: Block diagram of the proposed framework. (a) The signal temporal
logic specification φloco specifies the locomotion task. (b) A set of data-
driven kinematic constraints enforce the leg self-collision avoidance. (c)
The model predictive control-based trajectory optimization solves a stable
locomotion trajectory. (d) A whole-body controller tracks the desired
trajectory. (e) Perturbed walking experiments on our bipedal robot Cassie.

robots. As a distinguished formal logic, STL [8] offers
mathematical guarantees of specifications on dense-time,
real-valued signals, making it suitable for reasoning about
task logic correctness and quantifying robustness in complex
robotic systems.

Self-collision avoidance is another crucial component for
ensuring restabilization from disturbances, especially for
scenarios involving crossed-leg maneuvers [3], [4], [9] where
the distance between the robot’s legs diminishes, as shown in
Fig. 1(b). Several previous studies [2], [10] relied on inverted
pendulum models to plan foot placements for recovery but
often overlooked the risk of potential self-collisions during
the execution of the foot placement plan. On the other
hand, swing-leg trajectory planning that considers full-body
kinematics and collision checking is prohibitively expensive
for online computation.

In order to address these challenges, we design an
optimization-based planning framework, illustrated in Fig. 1.
As a core component of the model predictive controller
(MPC) framework, we encode a series of STL specifica-
tions (e.g., stability and foot placements) as an objective
function to enhance task satisfaction and locomotion ro-
bustness. Compared with traditional TO [11], [12] without
formal specification encoding, our proposed STL-based TO
has the capability of symbolic planning and reasoning to



achieve more complex task requirements such as temporal
sequencing order or timing constraints for task completion.
Furthermore, this TO ensures safety against leg self-collision
via a set of data-driven kinematic constraints. Solving the
TO generates a reduced-order optimal plan that describes the
center of mass (CoM) and swing-foot trajectories, including
the walking-step durations. From this solved trajectory, a
low-level controller derives a full-body motion through in-
verse kinematics and then uses a passivity-based technique
for motion tracking. We summarize our core contributions
as follows:

• This work represents the first-ever step towards in-
corporating STL-based formal methods into TO for
dynamic legged locomotion. We design a series of STL
task specifications that guide the planning of bipedal
locomotion under perturbations.

• We propose a Riemannian robustness metric that evalu-
ates the walking trajectory robustness based on reduced-
order locomotion dynamics. The Riemannian robustness
is seamlessly encoded as an STL specification and is
therefore optimized in the TO for robust locomotion.

• We conduct extensive push recovery experiments with
perturbations of varying magnitudes, directions, and
timings. We compare the robustness of our framework
with that of a foot placement controller baseline [2].

This work is distinct from our previous study [13] in
the following aspects. (i) Instead of a hierarchical task
and motion planning (TAMP) framework using abstraction-
based LTL [13], this study employs an optimization-based
MPC that integrates STL specifications to allow real-valued
signals. This property eliminates the mismatch between high-
level discrete action sequences and low-level continuous
motion plans. (ii) The degree to which STL specifications
are satisfied is quantifiable, enabling the MPC to provide a
least-violating solution when the STL specification cannot be
strictly satisfied. The LTL-based planner in [13], on the other
hand, makes decisions only inside the robustness region,
which is more vulnerable in real-system implementation.

II. NON-PERIODIC LOCOMOTION MODELING

A. Hybrid Reduced-Order Model for Bipedal Walking
We propose a new reduced-order model (ROM) that

extends the traditional linear inverted pendulum model
(LIPM) [14], [15]. The traditional LIPM features a point
mass denoted as the center-of-mass (CoM), and a mass-
less telescopic leg that maintains the CoM at a constant
height. The LIPM has a system state x := [pCoM;vCoM],
where pCoM = [pCoM,x; pCoM,y; pCoM,z] and vCoM =
[vCoM,x; vCoM,y; vCoM,z] are the position and velocity of
the CoM in the local stance-foot frame, as shown in Fig. 2(a).
The LIPM dynamics are expressed as follows:[

p̈CoM,x

p̈CoM,y

]
= ω2

[
pCoM,x

pCoM,y

]
(1)

where ω =
√

g/pCoM,z and g is the acceleration due to
gravity. The subscripts x and y indicate the sagittal and
lateral components of a vector, respectively.

We design a variant of the traditional LIPM that ad-
ditionally models the swing-foot position and velocity
(Fig. 2(a)). In effect, the state vector is augmented as x̄ :=
[pCoM;vCoM;pswing],pswing ∈ R3, and the control input ū
sets the swing foot velocity ṗswing. Moreover, we define
y = [x̄; ū] ∈ R12 as the system output, which will be
used in Sec. III for signal temporal logic (STL) definitions.
Our addition of the swing-foot position pswing, together
with pCoM, uniquely determines the leg configuration of
the Cassie robot (e.g., via inverse kinematics), allowing us
to plan a collision-free trajectory using only the ROM in
Sec. IV-B. The augmented state is estimated from the joint
encoder and IMU sensor in simulation.

At contact time, a reset map x̄+ = ∆̄j→j+1(x̄
−) uses the

swing foot location to transition to the next walking step:p+
CoM

v+
CoM

p+
swing

 =

p−
CoM − p−

swing

v−
CoM

−p−
swing

 (2)

This occurs when the system state reaches the switching
condition S := {x̄|pswing,z = hterrain}, where hterrain is
the terrain height. Note that the aforementioned position
and velocity parameters are expressed in a local coordinate
frame attached to the stance foot. The swing foot becomes
the stance foot immediately after it touches the ground.

B. Keyframe-Based Non-Periodic Locomotion and Rieman-
nian Robustness

To enable robust locomotion that adapts to unexpected
perturbations or rough terrain, we employ the concept of
locomotion keyframe [16]. A keyframe is a CoM apex state of
a walking step. To quantify the robustness of a non-periodic
walking step, we design a robust region centered around a
nominal keyframe state in a Riemannian space. The Rie-
mannian space [16] is a reparameterization of the Euclidean
CoM phase space using tangent and cotangent locomotion
manifolds, represented by a pair (σ, ζ). σ represents the
tangent manifold along which the CoM dynamics evolve,
while ζ represents the cotangent manifold orthogonal to σ.
These manifolds can be derived analytically from the LIPM
dynamics in (1); the detailed derivation is in [16]. Within
the Riemannian space, we define a robust keyframe region
that enables stable walking. This region is referred to as the
Riemannian region.

Definition II.1 (Riemannian region). The Riemannian re-
gion R is the area centered around a nominal keyframe
state (σnom, ζnom): Rd := {(pCoM,d, vCoM,d) |
σ(pCoM,d, vCoM,d) ∈ Σd, ζ(pCoM,d, vCoM,d) ∈ Zd}, where
d ∈ {x, y} indicates sagittal and lateral directions, re-
spectively. Σd = [σnom,d − δσd, σnom,d + δσd] and Zd =
[ζnom,d − δζd, ζnom,d + δζd] are the ranges of the manifold
values for σ and ζ, where δσd, δζd are robustness margins.

The sagittal and lateral Riemannian regions in the phase
space are illustrated in Fig. 2(b) as shaded areas. The bounds
of these Riemannian regions are curved in the phase space
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Fig. 2: Illustration of the locomotion specifications. (a) The highlighted
state in the middle is the keyframe of a walking step. (b) The grey areas
are the Riemannian regions in the sagittal and lateral phase spaces. The
signed distances to the bounds of the Riemannian regions are indicated by
the arrows. (c) Cassie’s foot is specified to step inside the lateral bounds.

because they obey the LIPM locomotion dynamics. Notably,
while two Riemannian regions exist in the lateral phase
space, only one is active at any given time, corresponding
with the stance leg labeled in Fig. 2(b).

Definition II.2 (Riemannian robustness). The Riemannian
robustness ρriem is the minimum signed distance of an actual
keyframe CoM state x to all the bounds of the Riemannian
regions. Namely, ρriem := min8l=1(rl(x)), where rl(x) is the
signed distance to the lth bound of the Riemannian regions,
as illustrated in Fig. 2(b). We have a total of 8 bounds as the
sagittal and lateral Riemannian regions each have 4 bounds.

Riemannian robustness represents the locomotion robust-
ness in the form of Riemannian regions. Any keyframe inside
the Riemannian region has a positive robustness value, which
indicates a stable walking step. In the next section, our goal
is to leverage Riemannian robustness as an objective function
and use STL-based optimization to plan robust trajectories
for locomotion recovery.

III. SIGNAL TEMPORAL LOGIC AND TASK
SPECIFICATION FOR LOCOMOTION

Signal temporal logic (STL) [17] uses logical symbols of
negation (¬), conjunction (∧), and disjunction (∨), as well
as temporal operators such as eventually (♢), always (□),
and until (U) to construct specifications. A specification is
defined with the following syntax:

φ := π | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 |
♢[t1,t2] φ | □[t1,t2] φ | φ1 U[t1,t2] φ2

(3)

where φ, φ1, and φ2 are STL specifications. π := (µπ(y)−
c ≥ 0) is a boolean predicate, where µπ : Rp → R is a

vector-valued function, c ∈ R, and the signal y(t) : R+ →
Rp is a p-dimensional vector at time t. For a dynamical
system, the signal y(t) is the system output (in our study,
y = [x̄; ū] ∈ R12). The time bounds of an STL formula
are denoted with t1 and t2, where 0 ≤ t1 ≤ t2 ≤ tend and
tend is the end of a planning horizon. The validity of an STL
specification is inductively defined using the rules in Table I.

TABLE I
VALIDITY SEMANTICS OF SIGNAL TEMPORAL LOGIC

(y, t) |= π ⇔ µπ(y(t))− c ≥ 0
(y, t) |= ¬φ ⇔ (y, t) ̸|= φ
(y, t) |= φ1 ∧ φ2 ⇔ (y, t) |= φ1 ∧ (y, t) |= φ2

(y, t) |= φ1 ∨ φ2 ⇔ (y, t) |= φ1 ∨ (y, t) |= φ2

(y, t) |= ♢[t1,t2]φ ⇔ ∃t′ ∈ [t+ t1, t+ t2], (y, t
′
) |= φ

(y, t) |= □[t1,t2]φ ⇔ ∀t′ ∈ [t+ t1, t+ t2], (y, t
′
) |= φ

(y, t) |= φ1U[t1,t2]φ2 ⇔ ∃t′ ∈ [t+ t1, t+ t2], (y, t
′
) |= φ2∧

∀t′′ ∈ [t+ t1, t
′
](y, t

′′
) |= φ1

STL provides the capability of quantifying robustness
degree [18] [19]. A positive robustness degree indicates
specification satisfaction, and its magnitude represents the
resilience to disturbances without violating this specification.
When incorporated into trajectory optimization as a cost,
the robustness degree allows for a minimally specification-
violating trajectory if the task specification cannot be sat-
isfied strictly [20]. Table II shows the semantics of the
robustness degree.

TABLE II
ROBUSTNESS DEGREE SEMANTICS

ρπ(y, t) = µπ(y(t))− c
ρ¬φ(y, t) = −ρφ(y, t)
ρφ1∧φ2 (y, t) = min(ρφ1 (y, t), ρφ2 (y, t))
ρφ1∨φ2 (y, t) = max(ρφ1 (y, t), ρφ2 (y, t))

ρ
♢[t1,t2]φ(y, t) = max

t
′∈[t+t1,t+t2]

(ρφ(y, t
′
))

ρ
□[t1,t2]φ(y, t) = min

t
′∈[t+t1,t+t2]

(ρφ(y, t
′
))

ρ
φ1U[t1,t2]φ2 (y, t) =

max
t
′∈[t+t1,t+t2]

(min(ρφ2 (y, t
′
),

min
t
′′∈[t+t1,t

′
]
(ρφ1 (y, t

′′
))))

The rest of this section introduces the locomotion specifi-
cation φloco, designed to guarantee stable walking trajecto-
ries. We interpret locomotion stability as a liveness property
in the sense that a keyframe with a positive Riemannian
robustness will eventually occur in the planning horizon.

Keyframe specification φkeyframe: To enforce properties
on a keyframe, we first describe it using an STL formula
φkeyframe, checking whether or not a signal y is a keyframe.
The keyframe occurs when the CoM is over the foot contact
in the sagittal direction. Illustrated in Fig. 2(a), this defi-
nition is formally specified as φkeyframe := (µπ

CoM,x(y) =
0), where the predicate denotes the sagittal CoM position
µπ
CoM,x(y) = pCoM,x.
Riemannian robustness φriem: A stable walking step has

a keyframe with positive Riemannian robustness; i.e., the
keyframe resides in the Riemannian region, as defined in
Def. II.2. As shown in Fig. 2(b), we encode the Riemannian
robustness specification φriem such that it is True when a
CoM state x of a signal is inside the Riemannian region:
φriem :=

∧8
l=1(rl(x) ≥ 0), where rl(x) is the signed
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Fig. 3: The planning horizon starts from the current measured state (pink).
An example of N = 2 walking steps and 8 knot points per walking step is
illustrated for simplicity (our actual implementation has 10 knot points).

distance from x to the lth bound of the Riemannian region
in the Riemannian space.

Locomotion stability φstable: To encode this property
using STL, we specify that the keyframe of the last
walking step falls inside the corresponding Riemannian
region. This stability property is encoded as φstable :=
♢[TN

contact,T
N+1
contact]

(φkeyframe ∧ φriem), where TN
contact and

TN+1
contact are the N th and N+1th contact times and represent

the time bounds of the last walking step in the planning
horizon.

Swing foot bound φfoot: For locomotion in a narrow space
(e.g., a treadmill, as shown in Fig. 2(c)), we use a safety
specification □φfoot to ensure the foothold lands inside of
the treadmill’s edges. The operator □ without a time bound
means the specification should hold for the entire planning
horizon. We define φfoot := (µπ

left(y) ≥ 0)∧(µπ
right(y) ≥ 0),

where µπ
left = −pswing,y+eleft and µπ

right = pswing,y−eright
are the predicates for limiting the lateral foot location against
the left edge eleft and the right edge eright of the treadmill.

Overall locomotion specification φloco: The compounded
locomotion specification is φloco = φstable ∧ (□φfoot).
Satisfying the specification φloco is equivalent to having a
positive robustness degree: (y, t) |= φloco ⇔ ρφloco(y, t) ≥
0. In order to maximize the locomotion robustness, we use
the robustness degree ρφloco as an objective function in the
trajectory optimization in the following section.

IV. MODEL PREDICTIVE CONTROL FOR PUSH RECOVERY

A. Optimization Formulation

We design a model predictive controller (MPC) to solve
a sequence of optimal states and controls (i.e., signals) that
simultaneously satisfy specification φloco, system dynamics,
and kinematic constraints within an N -step horizon.

The MPC functions as the primary motion planner of the
framework and operates in both normal and perturbed loco-
motion conditions. Our MPC is formulated as the following
nonlinear program:

min
X,U ,T

wL(U)− ρ̃φloco(X,U) (4)

s.t. x̄j
i+1 = f(x̄j

i , ū
j
i , T

j), i ∈ H \ S, j ∈ J (5)

x̄+,j+1 = ∆̄j→j+1(x̄
−,j), j ∈ J (6)

gcollision(x̄i) ≥ ϵ, i ∈ H (7)

gduration(T
j) ≥ 0, j ∈ J (8)

hinitial(x̄0) = 0, htransition(x̄i) = 0, i ∈ S (9)

where H is a set of indices that includes all time steps in
the horizon. We design H to span from the acquisition of
the latest measured states till the end of the next N walking
steps, with a total of M time steps. Fig. 3 illustrates a horizon
with N = 2. S is the set of indices containing the time
steps of all contact switch events, S ⊂ H. J = {0, . . . , N}
is the set of walking step indices. The decision variables
include X = {x̄1, . . . , x̄M}, U = {ū1, . . . , ūM}, and T =
{T 0, . . . , TN}. T is a vector defining the individual step
durations for all walking steps.

L(U) =
∑M

i=1 ||ūi||2 is a cost function penalizing the
control with a weight coefficient w. The robustness degree
ρ̃φloco(X,U) represents the degree of satisfaction of the
signal (X,U) with respect to the locomotion specification
φloco. ρ̃φloco is a smooth approximation of ρφloco using
smooth operators [21]. The exact, non-smooth version ρφloco

has discontinuous gradients, which can cause the optimiza-
tion problem to be ill-conditioned. Maximizing ρ̃φloco(X,U)
encourages the keyframe towards the center of the Rieman-
nian region, as discussed in Sec. III. The selection of w is a
tradeoff between enhancing STL robustness and minimizing
control effort. We choose a small w = 0.01 to promote
the use of aggressive control for rapid disturbance recovery.
Furthermore, we integrate ρ̃φloco as an objective function
instead of a constraint to allow minimally-violating solutions
and improve the TO-solving success rate in the presence of
large perturbations.

To satisfy the LIPM dynamics (1) while adapting step
durations T , we use a second-order Taylor expansion to
derive the approximated discrete dynamics (5). (6) represents
the reset map (2) from the foot-ground contact switch. (7)
represents a set of self-collision avoidance constraints, which
ensures a collision-free swing-foot trajectory. The threshold
ϵ is the minimum allowable distance for collision avoidance.
The function gcollision is a set of multilayer perceptrons
(MLPs) learned from leg configuration data, as detailed in
Sec. IV-B. (8) clamps step durations T within a feasible
range. By allowing variations in step durations, we enhance
the perturbation recovery capability of the bipedal system
[22]. (9) are the equality constraints of the MPC: hinitial

denotes the initial state constraint; htransition is the guard
function posing kinematic constraints between the swing foot
height and the terrain height, pswing,z = hterrain, for walking
step transitions at contact-switching indices in S.

Upon the successful completion of an MPC optimization,
the solution is immediately sent to the low-level passivity-
based controller [23] for tracking and execution. The MPC
then reinitializes the problem based on the latest state.

B. Data-Driven Self-Collision Avoidance Constraints

We design a set of multilayer perceptrons (MLPs) to
incorporate rapid self-collision avoidance (SCA) into the
MPC. Specifically, each MLP approximates the mapping
from the reduced-order LIPM state to the collision distance
between a particular geometry pair on Cassie that has high
collision risk.



pcswYy(m)

x(
m

)
W

al
ki

ng
 D

ir
ec

ti
on

00.20.4 -0.2 -0.4

0

0.2

-0.2

0.4

-0.4
0

0.05

0.10

0.15

0.20

0.25

M
in

im
um

 A
pp

ro
xi

m
at

ed
 D

is
ta

nc
e 

(m
)

= 0.03

(b)(a)

Fig. 4: (a) The robot kinematic anatomy for collision pair definitions. (b)
The MLP prediction of the minimum distance between Cassie’s two legs
with the left foot affixed to (0, 0) and the right foot moving in the xy plane.

According to Cassie’s kinematic configuration depicted in
Fig. 4(a), such collision-prone geometry pairs include: left
shin to right shin (LSRS), left shin to right tarsus (LSRT),
left shin to right Achilles rod (LSRA), left tarsus to right shin
(LTRS), left tarsus to right tarsus (LTRT), and left Achilles
rod to right shin (LARS). As a result, a total of 6 MLPs
are trained and then encoded as constraints in the MPC to
ensure collision-free trajectories.

A dataset with 106 entries is generated through extensive
exploration of leg configurations. The collision distances of
each configuration are automatically calculated by a built-in
MATLAB function checkCollision [24] using a capsule
collision model of Cassie. Each MLP consists of 2 hidden
layers of 24 neurons. Upon back-propagation training in
PyTorch [25], the MLPs achieve an accurate prediction with
an average absolute error of 0.002 m, and an impressive
evaluation speed of over 100 kHz, compared to 1 kHz using
full-body inverse kinematics for collision checking.

We illustrate the effectiveness of the MLPs through kine-
matic analysis of the collision-free range of motion of
Cassie’s swing leg. Specifically, we consider a representative
crossed-leg scenario where Cassie’s left foot is designated
as the stance foot and affixed directly beneath its pelvis.
We move Cassie’s right leg within the xy plane at the
same height as the stance foot while recording the minimum
value among all 6 MLP-approximated distances. The result
is plotted as a heat map in Fig. 4(b), where the coordinate
indicates the location of the right swing foot with respect to
the pelvis. As expected, the plot reveals a trend of decreasing
distance as the swing foot approaches the stance foot. A
contour line drawn at ϵ = 0.03 m indicates the MLP-enforced
boundary between collision-free and collision-prone regions
for foot placement. The collision-prone region to the left of
the plane exhibits a cluster of red zones, each indicating a
different active collision pair.

V. RESULTS

A. Self-Collision Avoidance during Leg Crossing

We demonstrate the ability of the signal temporal logic-
based model predictive controller (STL-MPC) to avoid leg
collisions in a critical push recovery setting, where a pertur-
bation forces the robot to execute a crossed-leg maneuver.

Fig. 5: (a) Snapshots of Cassie performing a crossed-leg maneuver for
push recovery. (b) The MLP-approximated collision distances are accurate
compared with the ground truth, and the planned leg trajectory is safe against
the threshold ϵ = 0.03 m. (c) An overhead view of the CoM trajectory and
foot placements when a lateral perturbation induces a crossed-leg maneuver.

The MPC with collision constraints generates a trajectory
shown in Fig. 5(a), where the swing leg adeptly maneuvers
around the stance leg and lands at a safe crossed-leg re-
covery point. Similarly, the robot extricates itself from the
crossed-leg state in the subsequent step, following a curved
trajectory that actively avoids self-collisions. Fig. 5(b) shows
that the multilayer perceptron (MLP)-approximated collision
distances are accurate and that the planned trajectory is safe
against the threshold ϵ. An overhead view comparing the
perturbed and unperturbed trajectories is shown in Fig. 5(c).

B. Comprehensive, Omnidirectional Perturbation Recovery

We examine the robustness of the STL-MPC framework
through an ensemble of push-recovery tests conducted in
a high-fidelity Simulink simulation with virtual joint limits
enforced and self-collision checked. For each experimental
trial, a horizontal perturbation force is applied to Cassie’s
pelvis for a fixed duration of 0.1 s. Across the trials, the
forces are systematically varied in 9 magnitudes evenly
distributed between 80 N and 400 N; 12 directions evenly
distributed between 0◦ and 330◦; and 4 locomotion phases
at a percentage s through a walking step, where s =
0%, 25%, 50%, 75%. Collectively, this experimental design
encompasses a total of 432 distinct scenarios. For a baseline
comparison, the same procedure is applied to an angular-
momentum-based reactive controller (ALIP controller) [2].

In Fig. 6, we compare the maximum allowable force
the STL-MPC can withstand to that of the baseline ALIP
controller. The STL-MPC demonstrates superior perturbation
recovery performance across the vast majority of directions
and phases, as reflected by the blue region encompassing
the red region. The improvement is particularly evident for



Fig. 6: The maximum allowable force exerted on the pelvis from which
the robot can safely recover within two steps in all 12 directions. The
perturbations happen at different phases s during a left leg stance. Values
on the left half result in crossed-leg maneuvers, and values on the right half
correspond to wide-step recoveries.

directions around 0◦, wherein crossed-leg maneuvers are in-
duced for recovery, and active self-collision avoidance plays
a critical role. This highlights the STL-MPC’s capability
to generate safe crossed-leg behaviors, thereby significantly
enhancing its robustness against more challenging lateral
perturbations. On the other hand, for perturbations between
180◦, both frameworks exhibit comparable performance,
generating wide side-steps for recovery. Note that we use
N = 2 walking steps as the MPC horizon, as existing studies
[26]–[28] indicate that a two-step motion is sufficient for
recovery to a periodic orbit.

C. Stepping Stone Maneuvering

To demonstrate the STL-MPC’s ability to handle a broad
set of task specifications, we study locomotion in a stepping-
stone scenario as shown in Fig. 7. To restrict the foot
location to the stepping stones, we augment the locomotion
specification φloco with an additional specification φstones

that encodes stepping stone locations. For each rectangular
stone, the presence of a stance foot pstance inside its four
edges is specified as φo

stone =
∧4

i=1(µ
o
i (pstance) ≥ 0) ,

where o ∈ {1, . . . , O}, O ∈ Z is the total number of stepping
stones, and µo

i is the signed distance from the stance foot to
the ith edge of the oth stone. Then the combined foot location
specification for N walking steps is:

φstones =

N∧
j=1

(□[T j ,T j ]

O∨
o=1

φo
stone)

The augmented specification is the compound of the original
locomotion specification φloco and the newly-added stepping
stone specification: φ′

loco = φloco ∧ φstones.

(a) (b)

Fig. 7: Illustration of maneuvering over two stepping-stone scenarios. (a)
STL-MPC solves dynamically feasible trajectories that satisfy an additional
foot-on-stones specification. (b) STL-MPC successfully plans crossed-leg
maneuvers to recover from perturbation.

We test STL-MPC using φ′
loco in two scenarios. The first

scenario has stepping stones generated at ground level with
random offsets and yaw rotations, as shown in Fig. 7(a).
The STL-MPC advances Cassie forward successfully. In the
second scenario, the STL-MPC demonstrates the ability to
cross legs in response to a lateral perturbation in Fig. 7(b).

D. Computation Speed Comparison between Smooth Encod-
ing Method and Mixed-Integer Program

To encode the robustness degree (as discussed in Sec. III)
of STL specifications into our gradient-based trajectory op-
timization (TO) formulation, we adopt a smooth-operator
method [29] that allows a smooth gradient for efficient
computation. Specifically, we replace the non-smooth min
and max operators in the robustness degree (as defined in
Table II) with their smooth counterpart m̃in and m̃ax.

Fig. 8: A comparison of the traditional MIP method and our smooth method
shows the planning time to solve trajectories for N -walking-step horizons.
The smooth method is faster and more consistent over all horizons.

We benchmark the solving speed of the smooth method
with the traditional mixed-integer programming (MIP)
method [8]. The smooth method demonstrates a faster and
more consistent solving speed, and its time consumption is
nearer to linear with respect to the walking steps N .

VI. CONCLUSION

This study presents a model predictive controller using
signal temporal logic (STL) for bipedal locomotion push
recovery. Our main contribution is the design of STL
specifications that quantify the locomotion robustness and
guarantee stable walking. Our framework increased Cassie’s
impulse tolerance by 81% in critical crossed-leg scenarios.
Further research will be focused on hardware verification and
extensions to rough, dynamic terrain.
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[8] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in 53rd IEEE Conference on Decision
and Control, 2014, pp. 81–87.

[9] R. Griffin, J. Foster, S. Fasano, B. Shrewsbury, and S. Bertrand,
“Reachability aware capture regions with time adjustment and cross-
over for step recovery,” 2023.

[10] R. J. Griffin, G. Wiedebach, S. Bertrand, A. Leonessa, and J. Pratt,
“Walking stabilization using step timing and location adjustment on
the humanoid robot, atlas,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2017, pp. 667–673.

[11] S. Xin, R. Orsolino, and N. Tsagarakis, “Online relative footstep
optimization for legged robots dynamic walking using discrete-time
model predictive control,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2019, pp. 513–520.

[12] F. M. Smaldone, N. Scianca, L. Lanari, and G. Oriolo, “Feasibility-
driven step timing adaptation for robust mpc-based gait generation in
humanoids,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
1582–1589, 2021.

[13] Z. Gu, N. Boyd, and Y. Zhao, “Reactive locomotion decision-making
and robust motion planning for real-time perturbation recovery,” in
International Conference on Robotics and Automation, 2022, pp.
1896–1902.

[14] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The
3d linear inverted pendulum mode: a simple modeling for a biped
walking pattern generation,” in Proceedings IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 1, 2001, pp. 239–
246 vol.1.

[15] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in IEEE International Conference on
Robotics and Automation, vol. 2, 2003, pp. 1620–1626.

[16] Y. Zhao, B. R. Fernandez, and L. Sentis, “Robust optimal planning
and control of non-periodic bipedal locomotion with a centroidal
momentum model,” The International Journal of Robotics Research,
vol. 36, no. 11, pp. 1211–1242, 2017.

[17] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, Y. Lakhnech and S. Yovine, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 152–166.

[18] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals,” Theoretical Computer Science,
vol. 410, no. 42, pp. 4262–4291, 2009.

[19] C. Belta and S. Sadraddini, “Formal methods for control synthesis:
An optimization perspective,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 2, no. 1, pp. 115–140, 2019.

[20] S. Sadraddini and C. Belta, “Robust temporal logic model predictive
control,” in 53rd Annual Allerton Conference on Communication,
Control, and Computing, 2015, pp. 772–779.

[21] Y. Gilpin, V. Kurtz, and H. Lin, “A smooth robustness measure of
signal temporal logic for symbolic control,” IEEE Control Systems
Letters, vol. 5, no. 1, pp. 241–246, 2021.

[22] M. Khadiv, A. Herzog, S. A. A. Moosavian, and L. Righetti, “Walking
control based on step timing adaptation,” IEEE Transactions on
Robotics, vol. 36, no. 3, pp. 629–643, 2020.

[23] H. Sadeghian, C. Ott, G. Garofalo, and G. Cheng, “Passivity-based
control of underactuated biped robots within hybrid zero dynamics
approach,” in IEEE International Conference on Robotics and Au-
tomation, 2017, pp. 4096–4101.

[24] T. M. Inc., “Robotic systems toolbox version: R2021b,” Natick,
Massachusetts, United States, 2022.

[25] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in pytorch,” in NIPS-W, 2017.

[26] P. Zaytsev, S. J. Hasaneini, and A. Ruina, “Two steps is enough: No
need to plan far ahead for walking balance,” in IEEE International
Conference on Robotics and Automation, 2015, pp. 6295–6300.

[27] T. Koolen, T. de Boer, J. Rebula, A. Goswami, and J. Pratt,
“Capturability-based analysis and control of legged locomotion, part 1:
Theory and application to three simple gait models,” The International
Journal of Robotics Research, vol. 31, no. 9, pp. 1094–1113, 2012.

[28] J. Ding, C. Zhou, Z. Guo, X. Xiao, and N. Tsagarakis, “Versatile reac-
tive bipedal locomotion planning through hierarchical optimization,”
in International Conference on Robotics and Automation, 2019, pp.
256–262.

[29] Y. V. Pant, H. Abbas, and R. Mangharam, “Smooth operator: Control
using the smooth robustness of temporal logic,” in IEEE Conference
on Control Technology and Applications, 2017, pp. 1235–1240.


	Introduction
	Non-periodic Locomotion Modeling
	Hybrid Reduced-Order Model for Bipedal Walking
	Keyframe-Based Non-Periodic Locomotion and Riemannian Robustness

	Signal Temporal Logic and Task Specification for Locomotion
	Model Predictive Control for Push Recovery
	Optimization Formulation
	Data-Driven Self-Collision Avoidance Constraints

	Results
	Self-Collision Avoidance during Leg Crossing
	Comprehensive, Omnidirectional Perturbation Recovery
	Stepping Stone Maneuvering
	Computation Speed Comparison between Smooth Encoding Method and Mixed-Integer Program

	Conclusion
	References

